Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Med ; 53(5)2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38577935

RESUMO

Histone chaperones serve a pivotal role in maintaining human physiological processes. They interact with histones in a stable manner, ensuring the accurate and efficient execution of DNA replication, repair and transcription. Retinoblastoma binding protein (RBBP)4 and RBBP7 represent a crucial pair of histone chaperones, which not only govern the molecular behavior of histones H3 and H4, but also participate in the functions of several protein complexes, such as polycomb repressive complex 2 and nucleosome remodeling and deacetylase, thereby regulating the cell cycle, histone modifications, DNA damage and cell fate. A strong association has been indicated between RBBP4/7 and some major human diseases, such as cancer, age­related memory loss and infectious diseases. The present review assesses the molecular mechanisms of RBBP4/7 in regulating cellular biological processes, and focuses on the variations in RBBP4/7 expression and their potential mechanisms in various human diseases, thus providing new insights for their diagnosis and treatment.


Assuntos
Histonas , Fatores de Transcrição , Humanos , Histonas/genética , Histonas/metabolismo , Fatores de Transcrição/metabolismo , Proteína 4 de Ligação ao Retinoblastoma/química , Proteína 4 de Ligação ao Retinoblastoma/metabolismo , Chaperonas de Histonas/genética , Chaperonas de Histonas/química , Chaperonas de Histonas/metabolismo , Ciclo Celular
2.
PeerJ ; 11: e16471, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38034873

RESUMO

Background: Ropivacaine is a local anesthetic commonly used in regional nerve blocks to manage perioperative pain during lung cancer surgery. Recently, the antitumor potential of ropivacaine has received considerable attention. Our previous study showed that ropivacaine treatment inhibits the malignant behavior of lung cancer cells in vitro. However, the potential targets of ropivacaine in lung cancer cells have not yet been fully identified. This study aimed to explore the antitumor effects and mechanisms of action of ropivacaine in lung cancer. Methods: Lung cancer A549 cells were treated with or without 1 mM ropivacaine for 48 h. Quantitative proteomics was performed to identify the differentially expressed proteins (DEPs) triggered by ropivacaine treatment. STRING and Cytoscape were used to construct protein-protein interaction (PPI) networks and analyze the most significant hub genes. Overexpression plasmids and small interfering RNA were used to modulate the expression of key DEPs in A549 and H1299 cells. MTS, transwell assays, and flow cytometry were performed to determine whether the key DEPs were closely related to the anticancer effect of ropivacaine on the malignant behavior of A549 and H1299 cells. Results: Quantitative proteomic analysis identified 327 DEPs (185 upregulated and 142 downregulated proteins) following ropivacaine treatment. Retinoblastoma-binding protein 4 (RBBP4) was one of the downregulated DEPs and was selected as the hub protein. TCGA database showed that RBBP4 was significantly upregulated in lung cancer and was associated with poor patient prognosis. Inhibition of RBBP4 by siRNA resulted in a significant decrease in the proliferation and invasive capacity of lung cancer cells and the induction of cell cycle arrest. Additionally, the results indicated RBBP4 knockdown enhanced antitumor effect of ropivacaine on A549 and H1299 cells. Conversely, the overexpression of RBBP4 using plasmids reversed the inhibitory effects of ropivacaine. Conclusion: Our data suggest that ropivacaine suppresses lung cancer cell malignancy by downregulating RBBP4 protein expression, which may help clarify the mechanisms underlying the antitumor effects of ropivacaine.


Assuntos
Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Proteína 4 de Ligação ao Retinoblastoma/metabolismo , Ropivacaina/farmacologia , Proteômica , Pontos de Checagem do Ciclo Celular
3.
Cancer Lett ; 557: 216078, 2023 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-36736531

RESUMO

For treatment of glioblastoma (GBM), temozolomide (TMZ) and radiotherapy (RT) exert antitumor effects by inducing DNA double-strand breaks (DSBs), mainly via futile DNA mismatch repair (MMR) and inducing apoptosis. Here, we provide evidence that RBBP4 modulates glioblastoma resistance to chemotherapy and radiotherapy by recruiting transcription factors and epigenetic regulators that bind to their promoters to regulate the expression of the Mre11-Rad50-NBS1(MRN) complex and the level of DNA-DSB repair, which are closely associated with recovery from TMZ- and radiotherapy-induced DNA damage in U87MG and LN229 glioblastoma cells, which have negative MGMT expression. Disruption of RBBP4 induced GBM cell DNA damage and apoptosis in response to TMZ and radiotherapy and enhanced radiotherapy and chemotherapy sensitivity by the independent pathway of MGMT. These results displayed a possible chemo-radioresistant mechanism in MGMT negative GBM. In addition, the RBBP4-MRN complex regulation axis may provide an interesting target for developing therapy-sensitizing strategies for GBM.


Assuntos
Quebras de DNA de Cadeia Dupla , Glioblastoma , Humanos , Glioblastoma/patologia , Enzimas Reparadoras do DNA/genética , Proteína Homóloga a MRE11/genética , Reparo do DNA , Temozolomida/uso terapêutico , Fatores de Transcrição/genética , DNA , Quimiorradioterapia , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ligação a DNA/genética , Hidrolases Anidrido Ácido/metabolismo , Proteína 4 de Ligação ao Retinoblastoma/genética , Proteína 4 de Ligação ao Retinoblastoma/metabolismo
4.
Thorac Cancer ; 14(7): 662-672, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36691322

RESUMO

BACKGROUND: Circular RNAs (circRNAs) play vital roles in non-small cell lung cancer (NSCLC) progression. Our research analyzed the role of circ_0110498 on the cisplatin (DDP) resistance of NSCLC. METHODS: Cell glycolysis was analyzed by measuring glucose consumption and lactate production. Protein expression was determined by western blot analysis. The expression of circ_0110498, microRNA (miR)-1287-5p and RBBP4 was detected by RT-qPCR assay. Cell counting kit-8, colony formation and transwell assays, together with flow cytometry were conducted to analyze cell DDP resistance, proliferation, metastasis and apoptosis. RESULTS: Circ_0110498 expression was elevated in DDP-resistant NSCLC tissues and cells. Circ_0110498 silencing not only suppressed the DDP resistance of NSCLC cells by inhibiting cell growth, metastasis and glycolysis, but also enhanced the DDP sensitivity of NSCLC tumors. MiR-1287-5p was sponged by circ_0110498, and its inhibitor also reversed the effect of circ_0110498 silencing on the DDP resistance of NSCLC cells. MiR-1287-5p interacted with RBBP4, and RBBP4 overexpression partly reversed the inhibitory effect of miR-1287-5p on the DDP resistance of NSCLC cells. CONCLUSION: Circ_0110498 facilitated DDP resistance partly through mediating the miR-1287-5p/RBBP4 signaling in NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Resistencia a Medicamentos Antineoplásicos , MicroRNAs , RNA Circular , Proteína 4 de Ligação ao Retinoblastoma , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Linhagem Celular Tumoral , Proliferação de Células , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/genética , Ácido Láctico , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Proteína 4 de Ligação ao Retinoblastoma/genética , Proteína 4 de Ligação ao Retinoblastoma/metabolismo , RNA Circular/genética , RNA Circular/metabolismo
5.
Genes Genomics ; 44(10): 1301-1309, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35622231

RESUMO

BACKGROUND: Mounting findings have revealed the increasingly appreciated functional importance of Retinoblastoma binding protein (RBBP) family members in tumorigenesis. However, the biological function of RBBP4 in breast cancer, especially in the most malignant and aggressive subtype, i.e., triple-negative breast cancer (TNBC), remains to be elucidated. OBJECTIVE: The present study was aimed at elucidating the role of RBBP4 in TNBC pathogenesis. METHODS: The expression of RBBP4 in TNBC tissues and cell lines was examined and its oncogenic-related functions were verified by performing a series of in vitro and in vivo experiments. RESULTS: At the cellular and tissue level, a marked increase in the RBBP4 expression was observed. Functionally, RBBP4 knockdown dramatically inhibited the proliferation, invasion, and migration of TNBC cells in vitro. Further, mechanistically, RBBP4 downregulation regulated the inactivation of epithelial-mesenchymal transition (EMT) of TNBC cells. In vivo xenograft model in nude mice also validated these results. CONCLUSION: Collectively, our results showed that the inhibition of RBBP4 suppresses the malignant progression of TNBC cells by regulating EMT. Thus, RBBP4 could serve as a novel biomarker and target for TNBC diagnosis and treatment.


Assuntos
Neoplasias de Mama Triplo Negativas , Animais , Linhagem Celular Tumoral , Proliferação de Células/genética , Transição Epitelial-Mesenquimal/genética , Humanos , Camundongos , Camundongos Nus , Proteína 4 de Ligação ao Retinoblastoma/metabolismo , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo
6.
G3 (Bethesda) ; 12(6)2022 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-35416979

RESUMO

RBBP4 is a subunit of the chromatin remodeling complexes known as Polycomb repressive complex 2 and histone deacetylase 1/2-containing complexes. These complexes are responsible for histone H3 lysine 27 methylation and deacetylation, respectively. How RBBP4 modulates the functions of these complexes remains largely unknown. We generated viable Rbbp4 mutant alleles in mouse embryonic stem cell lines by CRISPR-Cas9. The mutations disrupted Polycomb repressive complex 2 assembly and H3K27me3 establishment on target chromatin and altered histone H3 lysine 27 acetylation genome wide. Moreover, Rbbp4 mutant cells underwent dramatic changes in transcriptional profiles closely tied to the deregulation of H3K27ac. The alteration of H3K27ac due to RBBP4 dysfunction occurred on numerous cis-regulatory elements, especially putative enhancers. These data suggest that RBBP4 plays a central role in regulating histone H3 lysine 27 methylation and acetylation to modulate gene expression.


Assuntos
Histonas , Lisina , Proteína 4 de Ligação ao Retinoblastoma/metabolismo , Acetilação , Animais , Expressão Gênica , Genômica , Histonas/genética , Histonas/metabolismo , Lisina/metabolismo , Metilação , Camundongos , Complexo Repressor Polycomb 2/genética
7.
Chembiochem ; 23(13): e202200038, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35442561

RESUMO

Protopanaxadiol (PPD), a main ginseng metabolite, exerts powerful anticancer effects against multiple types of cancer; however, its cellular targets remain elusive. Here, we synthesized a cell-permeable PPD probe via introducing a bifunctional alkyne-containing diazirine photo-crosslinker and performed a photoaffinity labeling-based chemoproteomic study. We identified retinoblastoma binding protein 4 (RBBP4), a chromatin remodeling factor, as an essential cellular target of PPD in HCT116 colorectal cancer cells. PPD significantly decreased RBBP4-dependent trimethylation at lysine 27 of histone H3 (H3K27me3), a crucial epigenetic marker that correlates with histologic signs of colorectal cancer aggressiveness, and PPD inhibition of proliferation and migration of HCT116 cells was antagonized by RBBP4 RNA silencing. Collectively, our study highlights a previously undisclosed anti-colorectal cancer cellular target of the ginseng metabolite and advances the fundamental understanding of RBBP4 functions via a chemical biology strategy.


Assuntos
Neoplasias Colorretais , Panax , Sapogeninas , Neoplasias Colorretais/tratamento farmacológico , Células HCT116 , Humanos , Panax/química , Proteína 4 de Ligação ao Retinoblastoma/genética , Proteína 4 de Ligação ao Retinoblastoma/metabolismo , Sapogeninas/farmacologia , Fatores de Transcrição/metabolismo
8.
Dev Dyn ; 251(8): 1267-1290, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35266256

RESUMO

BACKGROUND: Retinoblastoma binding protein 4 (Rbbp4) is a component of transcription regulatory complexes that control cell cycle gene expression. Previous work indicated that Rbbp4 cooperates with the Rb tumor suppressor to block cell cycle entry. Here, we use genetic analysis to examine the interactions of Rbbp4, Rb, and Tp53 in zebrafish neural progenitor cell cycle regulation and survival. RESULTS: Rbbp4 is upregulated across the spectrum of human embryonal and glial brain cancers. Transgenic rescue of rbbp4 mutant embryos shows Rbbp4 is essential for zebrafish neurogenesis. Rbbp4 loss leads to apoptosis and γ-H2AX in the developing brain that is suppressed by tp53 knockdown or maternal zygotic deletion. Mutant retinal neural precursors accumulate in M phase and fail to initiate G0 gene expression. rbbp4; rb1 mutants show an additive effect on the number of M phase cells. In rbbp4 mutants, Tp53 acetylation is detected; however, Rbbp4 overexpression did not rescue DNA damage-induced apoptosis. CONCLUSION: Rbbp4 is necessary for neural progenitor cell cycle progression and initiation of G0 independent of Rb. Tp53-dependent apoptosis in the absence of Rbpb4 correlates with Tp53 acetylation. Together these results suggest that Rbbp4 is required for cell cycle exit and contributes to neural progenitor survival through the regulation of Tp53 acetylation.


Assuntos
Células-Tronco Neurais , Proteína 4 de Ligação ao Retinoblastoma , Proteína Supressora de Tumor p53 , Peixe-Zebra , Acetilação , Animais , Apoptose/genética , Ciclo Celular/genética , Humanos , Células-Tronco Neurais/metabolismo , Proteína 4 de Ligação ao Retinoblastoma/genética , Proteína 4 de Ligação ao Retinoblastoma/metabolismo , Fatores de Transcrição/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra
9.
Neuro Oncol ; 24(8): 1261-1272, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35231103

RESUMO

BACKGROUND: RBBP4 activates transcription by histone acetylation, but the partner histone acetyltransferases are unknown. Thus, we investigated the hypothesis that RBBP4 interacts with p300 in a complex in glioblastoma (GBM). METHODS: shRNA silencing of RBBP4 or p300 and RNAseq was used to identify genes co-regulated by RBBP4 and p300 in GBM43 patient-derived xenograft (PDX). RBBP4/p300 complex was demonstrated using proximity ligation assay (PLA) and ChIPseq delineated histone H3 acetylation and RBBP4/p300 complex binding in promoters/enhancers. Temozolomide (TMZ)-induced DNA double strand breaks (DSBs) were evaluated by γ-H2AX and proliferation by CyQuant and live cell monitoring assays. In vivo efficacy was based on survival of mice with orthotopic tumors. RESULTS: shRBBP4 and shp300 downregulated 4768 genes among which 1485 (31%) were commonly downregulated by both shRNAs, while upregulated genes were 2484, including 863 (35%) common genes. The pro-survival genes were the top-ranked among the downregulated genes, including C-MYC. RBBP4/p300 complex was demonstrated in the nucleus, and shRBBP4 or shp300 significantly sensitized GBM cells to TMZ compared to the control shNT in vitro (P < .05). Moreover, TMZ significantly prolonged the survival of mice bearing GBM22-shRBBP4 orthotopic tumors compared with control shNT tumors (median shNT survival 52 days vs. median shRBBP4 319 days; P = .001). CREB-binding protein (CBP)/p300 inhibitor CPI-1612 suppressed H3K27Ac and RBBP4/p300 complex target proteins, including C-MYC, and synergistically sensitized TMZ in vitro. Pharmacodynamic evaluation confirmed brain penetration by CPI-1612 supporting further investigation to evaluate efficacy to sensitize TMZ. CONCLUSIONS: RBBP4/p300 complex is present in GBM cells and is a potential therapeutic target.


Assuntos
Neoplasias Encefálicas , Proteína p300 Associada a E1A , Glioblastoma , Proteína 4 de Ligação ao Retinoblastoma , Acetilação , Animais , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Sobrevivência Celular , Resistencia a Medicamentos Antineoplásicos , Proteína p300 Associada a E1A/genética , Proteína p300 Associada a E1A/metabolismo , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Glioblastoma/metabolismo , Humanos , Camundongos , Regiões Promotoras Genéticas , Proteína 4 de Ligação ao Retinoblastoma/genética , Proteína 4 de Ligação ao Retinoblastoma/metabolismo , Temozolomida/farmacologia , Temozolomida/uso terapêutico , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Epigenetics ; 17(10): 1205-1218, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-34709113

RESUMO

Preimplantation development is critical for reproductive successes in mammals. Thus, it is important to understand how preimplantation embryogenesis is regulated. As a key event of preimplantation development, epigenetic reprogramming has been widely studied, yet how epigenetic complexes regulate preimplantation development remains largely unknown. Retinoblastoma binding protein 4 (RBBP4) and 7 (RBBP7) are integral components of epigenetic complexes including SIN3A, NuRD, and CoREST. Here, we demonstrate that double knockdown of Rbbp4 and 7, but not individually, causes embryonic lethality during the morula-to-blastocyst transition. Mechanistically, depletion of RBBP4 and 7 results in dysregulation of genes related to cell cycle, lineage development, and regulation of transcription, which is accompanied by cell cycle block, disrupted lineage specification and chromatin structure. Interestingly, RBBP4/7 depletion leads to a dramatic increase in H3.3 and H3K27ac abundance during morula-to-blastocyst transition. ChIP-seq analysis in early embryos and embryonic stem cells reveals enrichment of H3.3 at the promoter regions of RBBP4/7 target genes. In summary, our studies demonstrate the compensatory role of RBBP4/7 and reveal its potential mechanisms in preimplantation development.Summary sentence:RBBP4 and RBBP7 play a compensatory role in regulating cell proliferation, apoptosis, and histone H3.3 deposition during preimplantation development.


Assuntos
Histonas , Proteína 4 de Ligação ao Retinoblastoma , Animais , Blastocisto/metabolismo , Proliferação de Células , Cromatina/metabolismo , Metilação de DNA , Desenvolvimento Embrionário/genética , Regulação da Expressão Gênica no Desenvolvimento , Histonas/genética , Histonas/metabolismo , Mamíferos/genética , Mamíferos/metabolismo , Camundongos , Proteína 4 de Ligação ao Retinoblastoma/química , Proteína 4 de Ligação ao Retinoblastoma/genética , Proteína 4 de Ligação ao Retinoblastoma/metabolismo , Proteína 7 de Ligação ao Retinoblastoma/genética , Proteína 7 de Ligação ao Retinoblastoma/metabolismo , Fatores de Transcrição/genética
11.
Nucleic Acids Res ; 49(11): 6196-6212, 2021 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-34086947

RESUMO

Retinoblastoma-binding proteins 4 and 7 (RBBP4 and RBBP7) are two highly homologous human histone chaperones. They function in epigenetic regulation as subunits of multiple chromatin-related complexes and have been implicated in numerous cancers. Due to their overlapping functions, our understanding of RBBP4 and 7, particularly outside of Opisthokonts, has remained limited. Here, we report that in the ciliate protozoan Tetrahymena thermophila a single orthologue of human RBBP4 and 7 proteins, RebL1, physically interacts with histone H4 and functions in multiple epigenetic regulatory pathways. Functional proteomics identified conserved functional links for Tetrahymena RebL1 protein as well as human RBBP4 and 7. We found that putative subunits of multiple chromatin-related complexes including CAF1, Hat1, Rpd3, and MuvB, co-purified with RebL1 during Tetrahymena growth and conjugation. Iterative proteomics analyses revealed that the cell cycle regulatory MuvB-complex in Tetrahymena is composed of at least five subunits including evolutionarily conserved Lin54, Lin9 and RebL1 proteins. Genome-wide analyses indicated that RebL1 and Lin54 (Anqa1) bind within genic and intergenic regions. Moreover, Anqa1 targets primarily promoter regions suggesting a role for Tetrahymena MuvB in transcription regulation. RebL1 depletion inhibited cellular growth and reduced the expression levels of Anqa1 and Lin9. Consistent with observations in glioblastoma tumors, RebL1 depletion suppressed DNA repair protein Rad51 in Tetrahymena, thus underscoring the evolutionarily conserved functions of RBBP4/7 proteins. Our results suggest the essentiality of RebL1 functions in multiple epigenetic regulatory complexes in which it impacts transcription regulation and cellular viability.


Assuntos
Chaperonas de Histonas/metabolismo , Proteínas de Protozoários/metabolismo , Tetrahymena thermophila/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/metabolismo , Evolução Biológica , Sequência Conservada , DNA/metabolismo , Proteínas de Ligação a DNA/metabolismo , Epigênese Genética , Expressão Gênica , Células HEK293 , Chaperonas de Histonas/química , Chaperonas de Histonas/fisiologia , Histonas/metabolismo , Humanos , Neoplasias/metabolismo , Neoplasias/mortalidade , Oncogenes , Proteínas de Protozoários/química , Proteínas de Protozoários/fisiologia , Proteína 4 de Ligação ao Retinoblastoma/metabolismo , Proteína 7 de Ligação ao Retinoblastoma/metabolismo , Tetrahymena thermophila/genética , Tetrahymena thermophila/crescimento & desenvolvimento
12.
Biomed Res Int ; 2021: 6905985, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33506032

RESUMO

BACKGROUND: The majority of lung cancers are adenocarcinomas, with the proportion being 40%. The patients are mostly diagnosed in the middle and late stages with metastasis and easy recurrence, which poses great challenge to the treatment and prognosis. Platinum-based chemotherapy is a primary treatment for adenocarcinoma, which frequently causes drug resistance. As a result, it is important to uncover the mechanisms of the chemoresponse of adenocarcinoma to platinum-based chemotherapy. METHODS: The genes from the dataset GSE7880 were gathered into gene modules with the assistance of weighted gene coexpression network analysis (WGCNA), the gene trait significance absolute value (|GS|), and gene module memberships (MM). The genes from hub gene modules were calculated with a protein-protein interaction (PPI) network analysis in order to obtain a screening map of hub genes. The hub genes with both a high |GS| and MM and a high degree were selected. Furthermore, genes in the hub gene modules also went through a Gene Ontology (GO) functional enrichment analysis. RESULTS: 11 hub genes in four hub gene modules (LY86, ACTR2, CDK2, CKAP4, KPNB1, RBBP4, SMAD4, MYL6, RPS27, TSPAN2, and VAMP2) were chosen as the significant hub genes. Through the GO function enrichment analysis, it was indicated that four modules were abundant in immune system functions (floralwhite), amino acid biosynthetic process (lightpink4), cell chemotaxis (navajowhite2), and targeting protein (paleturquoise). Four hub genes with the highest |GS| were verified by prognostic analysis.


Assuntos
Adenocarcinoma de Pulmão , Resistencia a Medicamentos Antineoplásicos , Neoplasias Pulmonares , Compostos de Platina/farmacologia , Proteína 4 de Ligação ao Retinoblastoma , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/metabolismo , Adenocarcinoma de Pulmão/mortalidade , Antineoplásicos/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/mortalidade , Prognóstico , Mapas de Interação de Proteínas/efeitos dos fármacos , Mapas de Interação de Proteínas/genética , Proteína 4 de Ligação ao Retinoblastoma/genética , Proteína 4 de Ligação ao Retinoblastoma/metabolismo , Transcriptoma/efeitos dos fármacos , Transcriptoma/genética
13.
J Biochem ; 169(1): 65-73, 2021 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-33084863

RESUMO

Circular RNAs (circRNAs) are important regulators in various cancers. Previous studies have found that hsa_circ_0102231 is an oncogene in lung adenocarcinoma. Here, we investigated its mechanism in the development of non-small cell lung cancer (NSCLC). We detected the levels of hsa_circ_0102231 in five NSCLC cell lines and one normal bronchial epithelium cell line. The interaction between hsa_circ_0102231 and miR-145 was predicted and confirmed by pull-down and luciferase assays. The nuclear mass separation assay and fluorescence in situ hybridization were used to detect the distribution of hsa_circ_0102231. Cell Counting Kit-8 and Transwell assays were used to assess the cell proliferative and invasive ability. Western blot and RT-qPCR, respectively, detected the protein and mRNA levels of RBBP4. The RBBP4 promoter activity was detected with a luciferase assay. We found that hsa_circ_0102231 level was higher in NSCLC cells. hsa_circ_0102231 is mainly localized to the cytoplasm. hsa_circ_0102231 promotes NSCLC cell proliferation and invasion by sponge for miR-145. miR-145 significantly decreases the RBBP4 promoter activity, and its mRNA and protein levels. RBBP4 is an oncogene to promote proliferation and invasion ability. Our findings suggest that hsa_circ_0102231 promotes proliferation and invasion by mediating the miR-145/RBBP4 axis in NSCLC, indicating that it might be a potential target for NSCLC treatment.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/patologia , Proliferação de Células , Neoplasias Pulmonares/patologia , MicroRNAs/metabolismo , RNA Circular/metabolismo , Proteína 4 de Ligação ao Retinoblastoma/metabolismo , Células A549 , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Técnicas de Silenciamento de Genes , Humanos , Hibridização in Situ Fluorescente , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , MicroRNAs/genética , Invasividade Neoplásica , Oncogenes , RNA Circular/genética , Proteína 4 de Ligação ao Retinoblastoma/genética , Regulação para Cima
14.
Arthritis Rheumatol ; 73(6): 980-990, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33369221

RESUMO

OBJECTIVE: To investigate the functional consequences of the single-nucleotide polymorphism rs4648889 in a putative enhancer upstream of the RUNX3 promoter associated with susceptibility to ankylosing spondylitis (AS). METHODS: Using nuclear extracts from Jurkat cells and primary human CD8+ T cells, the effects of rs4648889 on allele-specific transcription factor (TF) binding were investigated by DNA pull-down assay and quantitative mass spectrometry (qMS), with validation by electrophoretic mobility shift assay (EMSA), Western blotting of the pulled-down eluates, and chromatin immunoprecipitation (ChIP)-quantitative polymerase chain reaction (qPCR) analysis. Further functional effects were tested by small interfering RNA knockdown of the gene for interferon regulatory factor 5 (IRF5), followed by reverse transcription-qPCR (RT-qPCR) and enzyme-linked immunosorbent assay (ELISA) to measure the levels of IFNγ messenger RNA (mRNA) and protein, respectively. RESULTS: In nuclear extracts from CD8+ T cells, results of qMS showed that relative TF binding to the AS-risk A allele of rs4648889 was increased 3.7-fold (P < 0.03) for Ikaros family zinc-finger protein 3 (IKZF3; Aiolos) and components of the NuRD complex, including chromodomain helicase DNA binding protein 4 (CHD4) (3.6-fold increase; P < 0.05) and retinoblastoma binding protein 4 (RBBP4) (4.1-fold increase; P < 0.03). In contrast, IRF5 bound significantly more to the AS-protective G allele compared to the AS-risk A allele (fold change 8.2; P = 0.003). Validation with Western blotting, EMSA, and ChIP-qPCR confirmed the differential allelic binding of IKZF3, CHD4, RBBP4, and IRF5. Silencing of IRF5 in CD8+ T cells increased the levels of IFNγ mRNA as measured by RT-qPCR (P = 0.03) and IFNγ protein as measured by ELISA (P = 0.02). CONCLUSION: These findings suggest that the association of rs4648889 with AS reflects allele-specific binding of this enhancer-like region to certain TFs, including IRF5, IKZF3, and members of the NuRD complex. IRF5 may have crucial influences on the functions of CD8+ lymphocytes, a finding that could reveal new therapeutic targets for the management of AS.


Assuntos
Subunidade alfa 3 de Fator de Ligação ao Core/genética , RNA Mensageiro/metabolismo , Espondilite Anquilosante/genética , Western Blotting , Linfócitos T CD8-Positivos , Subunidade alfa 3 de Fator de Ligação ao Core/metabolismo , Ensaio de Desvio de Mobilidade Eletroforética , Ensaio de Imunoadsorção Enzimática , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Predisposição Genética para Doença , Humanos , Fator de Transcrição Ikaros/genética , Fator de Transcrição Ikaros/metabolismo , Fatores Reguladores de Interferon/genética , Fatores Reguladores de Interferon/metabolismo , Interferon gama/genética , Interferon gama/metabolismo , Células Jurkat , Espectrometria de Massas , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/genética , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/metabolismo , Polimorfismo de Nucleotídeo Único , RNA Interferente Pequeno , Proteína 4 de Ligação ao Retinoblastoma/genética , Proteína 4 de Ligação ao Retinoblastoma/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Espondilite Anquilosante/metabolismo , Fatores de Transcrição/metabolismo
15.
Mol Cell ; 77(6): 1265-1278.e7, 2020 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-31959557

RESUMO

Diverse accessory subunits are involved in the recruitment of polycomb repressive complex 2 (PRC2) to CpG island (CGI) chromatin. Here we report the crystal structure of a SUZ12-RBBP4 complex bound to fragments of the accessory subunits PHF19 and JARID2. Unexpectedly, this complex adopts a dimeric structural architecture, accounting for PRC2 self-association that has long been implicated. The intrinsic PRC2 dimer is formed via domain swapping involving RBBP4 and the unique C2 domain of SUZ12. MTF2 and PHF19 associate with PRC2 at around the dimer interface and stabilize the dimer. Conversely, AEBP2 binding results in a drastic movement of the C2 domain, disrupting the intrinsic PRC2 dimer. PRC2 dimerization enhances CGI DNA binding by PCLs in pairs in vitro, reminiscent of the widespread phenomenon of transcription factor dimerization in active transcription. Loss of PRC2 dimerization impairs histone H3K27 trimethylation (H3K27me3) on chromatin at developmental gene loci in mouse embryonic stem cells.


Assuntos
Cromatina/metabolismo , Ilhas de CpG , Metilação de DNA , Histonas/metabolismo , Complexo Repressor Polycomb 2/química , Multimerização Proteica , Animais , Diferenciação Celular , Cromatina/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Histonas/genética , Humanos , Camundongos , Camundongos Knockout , Células-Tronco Embrionárias Murinas/citologia , Células-Tronco Embrionárias Murinas/metabolismo , Proteínas de Neoplasias , Complexo Repressor Polycomb 2/genética , Complexo Repressor Polycomb 2/metabolismo , Complexo Repressor Polycomb 2/fisiologia , Conformação Proteica , Proteína 4 de Ligação ao Retinoblastoma/genética , Proteína 4 de Ligação ao Retinoblastoma/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
16.
Nucleic Acids Res ; 47(22): 11589-11608, 2019 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-31713634

RESUMO

Centromere function requires the presence of the histone H3 variant CENP-A in most eukaryotes. The precise localization and protein amount of CENP-A are crucial for correct chromosome segregation, and misregulation can lead to aneuploidy. To characterize the loading of CENP-A to non-centromeric chromatin, we utilized different truncation- and localization-deficient CENP-A mutant constructs in Drosophila melanogaster cultured cells, and show that the N-terminus of Drosophila melanogaster CENP-A is required for nuclear localization and protein stability, and that CENP-A associated proteins, rather than CENP-A itself, determine its localization. Co-expression of mutant CENP-A with its loading factor CAL1 leads to exclusive centromere loading of CENP-A whereas co-expression with the histone-binding protein RbAp48 leads to exclusive non-centromeric CENP-A incorporation. Mass spectrometry analysis of non-centromeric CENP-A interacting partners identified the RbAp48-containing NuRD chromatin remodeling complex. Further analysis confirmed that NuRD is required for ectopic CENP-A incorporation, and RbAp48 and MTA1-like subunits of NuRD together with the N-terminal tail of CENP-A mediate the interaction. In summary, our data show that Drosophila CENP-A has no intrinsic specificity for centromeric chromatin and utilizes separate loading mechanisms for its incorporation into centromeric and ectopic sites. This suggests that the specific association and availability of CENP-A interacting factors are the major determinants of CENP-A loading specificity.


Assuntos
Proteína Centromérica A/metabolismo , Centrômero/metabolismo , Montagem e Desmontagem da Cromatina/fisiologia , Proteínas de Drosophila/metabolismo , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/metabolismo , Animais , Células Cultivadas , Proteínas de Drosophila/genética , Drosophila melanogaster , Domínios Proteicos , Proteína 4 de Ligação ao Retinoblastoma/genética , Proteína 4 de Ligação ao Retinoblastoma/metabolismo , Transativadores/metabolismo
17.
Hepatobiliary Pancreat Dis Int ; 18(5): 446-451, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31501018

RESUMO

BACKGROUND: Retinoblastoma binding protein 4 (RBBP4) plays an essential role in the development of multiple cancers. However, its relationship with prognosis in colon cancer and colon cancer hepatic metastasis has not been elucidated. The aim of this study was to explore the relationship between RBBP4 expression and prognosis of colon cancer patients and to evaluate RBBP4 as a new prognostic marker in these patients. METHODS: Eighty colon cancer patients underwent surgical resection of the colon were enrolled. Among them, forty colon cancer patients suffered with hepatic metastasis. The colon cancer tissues, para-colon cancer tissues, and hepatic metastatic cancer tissues were collected from the pathological department for further analysis. The expression of RBBP4 proteins was examined by immunohistochemistry and correlated with clinicopathological parameters. The Cancer Genome Atlas (TCGA) database was used to validate the expression and explore its relationship with clinical characteristics. RESULTS: RBBP4 was up-regulated in the colon cancer tissues compared with the para-colon cancer tissues. The analysis of TCGA database verified the upregulation of RBBP4 in the colon cancer tissues and RBBP4 overexpression was correlated with nerve invasion and poor outcomes of chemotherapy. Moreover, the positive rate of RBBP4 expression in 40 colon cancer patients with hepatic metastasis was higher in the hepatic metastatic cancer tissues (39/40, 97.5%) than in the colon cancer tissues (26/40, 65.0%). Our clinicopathological analysis showed that RBBP4 expression was significantly correlated with vascular invasion, hepatic metastasis, and lymph node involvement (all P < 0.05). Additionally, the survival analysis demonstrated that RBBP4 over-expression was correlated with poor prognosis. CONCLUSIONS: RBBP4 was upregulated in the colon cancer. RBBP4 may be a novel predictor for poor prognosis of colon cancer and colon cancer hepatic metastasis.


Assuntos
Colo/metabolismo , Neoplasias do Colo/metabolismo , Neoplasias Hepáticas/metabolismo , RNA Mensageiro/metabolismo , Proteína 4 de Ligação ao Retinoblastoma/metabolismo , Adulto , Idoso , Biomarcadores Tumorais/metabolismo , Vasos Sanguíneos/patologia , Neoplasias do Colo/genética , Neoplasias do Colo/patologia , Feminino , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/secundário , Metástase Linfática , Masculino , Pessoa de Meia-Idade , Invasividade Neoplásica/genética , Prognóstico , Proteína 4 de Ligação ao Retinoblastoma/genética , Taxa de Sobrevida , Regulação para Cima
18.
J Am Soc Nephrol ; 30(9): 1605-1624, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31383731

RESUMO

BACKGROUND: The discoidin domain receptor 1 (DDR1) is activated by collagens, upregulated in injured and fibrotic kidneys, and contributes to fibrosis by regulating extracellular matrix production, but how DDR1 controls fibrosis is poorly understood. DDR1 is a receptor tyrosine kinase (RTK). RTKs can translocate to the nucleus via a nuclear localization sequence (NLS) present on the receptor itself or a ligand it is bound to. In the nucleus, RTKs regulate gene expression by binding chromatin directly or by interacting with transcription factors. METHODS: To determine whether DDR1 translocates to the nucleus and whether this event is mediated by collagen-induced DDR1 activation, we generated renal cells expressing wild-type or mutant forms of DDR1 no longer able to bind collagen. Then, we determined the location of the DDR1 upon collagen stimulation. Using both biochemical assays and immunofluorescence, we analyzed the steps involved in DDR1 nuclear translocation. RESULTS: We show that although DDR1 and its natural ligand, collagen, lack an NLS, DDR1 is present in the nucleus of injured human and mouse kidney proximal tubules. We show that DDR1 nuclear translocation requires collagen-mediated receptor activation and interaction of DDR1 with SEC61B, a component of the Sec61 translocon, and nonmuscle myosin IIA and ß-actin. Once in the nucleus, DDR1 binds to chromatin to increase the transcription of collagen IV, a major collagen upregulated in fibrosis. CONCLUSIONS: These findings reveal a novel mechanism whereby activated DDR1 translates to the nucleus to regulate synthesis of profibrotic molecules.


Assuntos
Colágeno Tipo IV/genética , Colágeno Tipo I/metabolismo , Receptor com Domínio Discoidina 1/metabolismo , Túbulos Renais Proximais/metabolismo , Actinas/metabolismo , Injúria Renal Aguda/metabolismo , Animais , Transporte Biológico , Linhagem Celular , Núcleo Celular , Cromatina/metabolismo , Colágeno Tipo I/farmacologia , Colágeno Tipo IV/metabolismo , Receptor com Domínio Discoidina 1/genética , Humanos , Túbulos Renais Proximais/patologia , Masculino , Camundongos , Cadeias Pesadas de Miosina/metabolismo , Sinais de Localização Nuclear , Proteína 4 de Ligação ao Retinoblastoma/metabolismo , Canais de Translocação SEC/metabolismo , Transcrição Gênica
19.
J Biol Chem ; 294(38): 13928-13938, 2019 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-31358618

RESUMO

The constitutively nuclear histone deacetylases (HDACs) 1, 2, and 3 erase acetyl marks on acetyllysine residues, alter the landscape of histone modifications, and modulate chromatin structure and dynamics and thereby crucially regulate gene transcription in higher eukaryotes. Nuclear HDACs exist as at least six giant multiprotein complexes whose nonenzymatic subunits confer genome targeting specificity for these enzymes. The deacetylase activity of HDACs has been shown previously to be enhanced by inositol phosphates, which also bridge the catalytic domain in protein-protein interactions with SANT (Swi3, Ada2, N-Cor, and TFIIIB) domains in all HDAC complexes except those that contain the Sin3 transcriptional corepressors. Here, using purified recombinant proteins, coimmunoprecipitation and HDAC assays, and pulldown and NMR experiments, we show that HDAC1/2 deacetylase activity in one of the most ancient and evolutionarily conserved Sin3L/Rpd3L complexes is inducibly up-regulated by inositol phosphates but involves interactions with a zinc finger motif in the Sin3-associated protein 30 (SAP30) subunit that is structurally unrelated to SANT domains, indicating convergent evolution at the functional level. This implies that this mode of regulation has evolved independently multiple times and provides an evolutionary advantage. We also found that constitutive association with another core subunit, Rb-binding protein 4 chromatin-binding factor (RBBP4), further enhances deacetylase activity, implying both inducible and constitutive regulatory mechanisms within the same HDAC complex. Our results indicate that inositol phosphates stimulate HDAC activity and that the SAP30 zinc finger motif performs roles similar to that of the unrelated SANT domain in promoting the SAP30-HDAC1 interaction and enhancing HDAC activity.


Assuntos
Histona Desacetilase 1/metabolismo , Histona Desacetilases/metabolismo , Fosfatos de Inositol/metabolismo , Sequência de Aminoácidos , Proteínas de Ligação a DNA/metabolismo , Células HEK293 , Histona Desacetilase 1/ultraestrutura , Histona Desacetilases/ultraestrutura , Humanos , Fosfatos de Inositol/química , Fosfatos de Inositol/fisiologia , Modelos Teóricos , Correpressor 1 de Receptor Nuclear , Ligação Proteica , Proteínas Repressoras/metabolismo , Proteína 4 de Ligação ao Retinoblastoma/metabolismo , Fatores de Transcrição , Ativação Transcricional , Dedos de Zinco
20.
Hum Mol Genet ; 28(15): 2501-2513, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31067316

RESUMO

Craniosynostosis, the premature ossification of cranial sutures, is a developmental disorder of the skull vault, occurring in approximately 1 in 2250 births. The causes are heterogeneous, with a monogenic basis identified in ~25% of patients. Using whole-genome sequencing, we identified a novel, de novo variant in BCL11B, c.7C>A, encoding an R3S substitution (p.R3S), in a male patient with coronal suture synostosis. BCL11B is a transcription factor that interacts directly with the nucleosome remodelling and deacetylation complex (NuRD) and polycomb-related complex 2 (PRC2) through the invariant proteins RBBP4 and RBBP7. The p.R3S substitution occurs within a conserved amino-terminal motif (RRKQxxP) of BCL11B and reduces interaction with both transcriptional complexes. Equilibrium binding studies and molecular dynamics simulations show that the p.R3S substitution disrupts ionic coordination between BCL11B and the RBBP4-MTA1 complex, a subassembly of the NuRD complex, and increases the conformational flexibility of Arg-4, Lys-5 and Gln-6 of BCL11B. These alterations collectively reduce the affinity of BCL11B p.R3S for the RBBP4-MTA1 complex by nearly an order of magnitude. We generated a mouse model of the BCL11B p.R3S substitution using a CRISPR-Cas9-based approach, and we report herein that these mice exhibit craniosynostosis of the coronal suture, as well as other cranial sutures. This finding provides strong evidence that the BCL11B p.R3S substitution is causally associated with craniosynostosis and confirms an important role for BCL11B in the maintenance of cranial suture patency.


Assuntos
Montagem e Desmontagem da Cromatina , Suturas Cranianas/crescimento & desenvolvimento , Craniossinostoses/metabolismo , Mutação de Sentido Incorreto , Nucleossomos/metabolismo , Osteogênese , Proteínas Repressoras/genética , Proteínas Supressoras de Tumor/genética , Animais , Suturas Cranianas/metabolismo , Craniossinostoses/genética , Craniossinostoses/fisiopatologia , Análise Mutacional de DNA , Modelos Animais de Doenças , Humanos , Lactente , Masculino , Camundongos , Ligação Proteica , Conformação Proteica , Proteínas Repressoras/metabolismo , Proteínas Repressoras/fisiologia , Proteína 4 de Ligação ao Retinoblastoma/metabolismo , Transativadores/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Proteínas Supressoras de Tumor/fisiologia , População Branca , Sequenciamento Completo do Genoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...